Weak localization and electron–electron interactions in few layer black phosphorus devices
نویسندگان
چکیده
منابع مشابه
Infrared fingerprints of few-layer black phosphorus
Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thi...
متن کاملWeak localization in electric-double-layer gated few-layer graphene
We induce surface carrier densities up to ∼ ⋅ 7 1014 cm−2 in few-layer graphene devices by electric double layer gating with a polymeric electrolyte. In 3-, 4and 5-layer graphene below 20–30 K we observe a logarithmic upturn of resistance that we attribute to weak localization in the diffusive regime. By studying this effect as a function of carrier density and with ab initio calculations we de...
متن کاملInterlayer breathing and shear modes in few-layer black phosphorus.
The interlayer breathing and shear modes in few-layer black phosphorus are investigated for their symmetry and lattice dynamical properties. The symmetry groups for the even-layer and odd-layer few-layer black phosphorus are utilized to determine the irreducible representation and the infrared and Raman activity for the interlayer modes. The valence force field model is applied to calculate the...
متن کاملMechanical and Electrical Anisotropy of Few-Layer Black Phosphorus.
We combined reflection difference microscopy, electron transport measurements, and atomic force microscopy to characterize the mechanical and electrical anisotropy of few-layer black phosphorus. We were able to identify the lattice orientations of the two-dimensional material and construct suspended structures aligned with specific crystal axes. The approach allowed us to probe the anisotropic ...
متن کاملLow-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus.
As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand the low-frequency (LF) interlayer breathing modes (<100 cm(-1)) in few-layer BP for the first time. Using a laser polarization dependence study and group theory analysis, the br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: 2D Materials
سال: 2016
ISSN: 2053-1583
DOI: 10.1088/2053-1583/3/3/034003